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Abstract. The eddy-covariance technique measures carbon, water, and energy fluxes between the land surface and the atmo-

sphere at several hundreds of sites globally. Collections of standardised and homogenised flux estimates such as the LaThuile,

Fluxnet2015, National Ecological Observatory Network (NEON), Integrated Carbon Observation System (ICOS), AsiaFlux,

and Terrestrial Ecosystem Research Network (TERN) / OzFlux data sets are invaluable to study land surface processes and

vegetation functioning at the ecosystem scale. Space-borne measurements give complementary information on the state of the5

land surface in the surroundings of the towers. They aid the interpretation of the fluxes and support the training and validation

of ecosystem models. However, insufficient quality, frequent and/or long gaps are recurrent problems in applying the remotely

sensed data and may considerably affect the scientific conclusions drawn from them. Here, we describe a standardised pro-

cedure to extract, quality filter, and gap-fill Earth observation data from the MODIS instruments and the Landsat satellites.

The methods consistently process surface reflectance in individual spectral bands, derived vegetation indices and land surface10

temperature. A geometrical correction estimates the magnitude of land surface temperature as if seen from nadir or 40◦ off-

nadir. We offer to the community pre-processed Earth observation data in a radius of 2 km around 338 flux sites based on the

MCD43A4/A2, MxD11A1 MODIS products and Landsat collection 1 Tier1 and Tier2 products. The data sets we provide can

widely facilitate the integration of activities in the fields of eddy-covariance, remote sensing and modelling.

1 Introduction15

The installation and maintenance of instrumental infrastructure at eddy-covariance (EC) sites worldwide require considerable

financial and logistical efforts and labour force. The precious data sets of land-atmosphere fluxes and environmental conditions

allow fundamental insights on ecosystem functioning (Baldocchi, 2008; Baldocchi et al., 2018; Baldocchi, 2020; Migliavacca
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et al., 2021; Nelson et al., 2020). A significant achievement is the central processing, quality control, and open standardised

distribution of a large number of the available observational records in data collections such as the LaThuile, Fluxnet2015,20

ABCflux (amonst others, Papale et al., 2006; Baldocchi, 2008; Pastorello et al., 2020; Virkkala et al., 2021b; Papale, 2020) to

which many site teams contribute.

Complementary information from satellites or cameras (phenocams, Wingate et al., 2015) aid and refine studies of local land-

atmosphere interactions as they relate to ecosystem structure, phenology, and functioning and the state of the land surface (e.g.,

Migliavacca et al., 2015). Earth observation (EO) data for varying regional sizes around the sites can represent the actual area25

that contributes to the flux measurements - partly even more accurately than similar ground-based measurements can (Gamon,

2015) - provided sufficiently high spatial resolution and temporal overlap with the site-level records. Next to local studies, the

combination of flux and satellite observations is also a basic ingredient for upscaling exercises of the in-situ fluxes to larger

areas or even the globe (Ueyama et al., 2013; Tramontana et al., 2016; Jung et al., 2019, 2020; Joiner et al., 2018; Reitz et al.,

2021; Virkkala et al., 2021a; Zeng et al., 2020).30

Independent of the nature of the scientific application, the quality control and gap structure of both the EC and the EO data are

the groundwork of each analysis. Different criteria help to identify problematic data points with differing levels of strictness

depending on the given application. Moffat et al. (2007) and Falge et al. (2001) describe techniques to fill gaps due to missing

data points in the EC data. The literature also offers a diverse set of methods to gap-fill EO data that include spatial, temporal or

cross-sensor approaches (to name a few, Wang et al., 2012; v. Buttlar et al., 2014; Weiss et al., 2014; Verger et al., 2011, 2013;35

Kandasamy et al., 2013; Moreno et al., 2014; Moreno-Martínez et al., 2020; Yan and Roy, 2018; Ghafarian Malamiri et al.,

2018; Li et al., 2018; Dumitrescu et al., 2020). The pre-processing steps are laborious and they are key to the results of the

analyses. This contribution proposes a set of steps for the systematic quality assurance and gap-filling of key land surface

indicators from EO data at varying resolutions. We apply them to official data products from the Moderate Resolution Imaging

Spectroradiometer (MODIS) instruments and the sensors on board the Landsat satellites. Both MODIS and Landsat have long40

observational coverage with a high temporal overlap with most freely available EC records. Landsat measurements are of par-

ticular interest because they resolve small spatial details in pixels of 30 m size, but at the cost of missing out on short temporal

features. The opposite is true for MODIS data products, which partly average over heterogeneous areas in spatially compara-

tively coarse pixels of several hundred meters. However, MODIS offers daily, partly even sub-daily temporal resolution. We

process EO data sets of both surface reflectance and land surface temperature (LST) for a limited area around a given flux45

site. For both the quality control and the gap-filling, the approaches aim to be generalisable across all sites without accounting

for specific local conditions, yet flexible enough to accurately reproduce phenological behaviour and characteristic features

such as disturbances or fast transitions in managed ecosystems. The procedure shall be as simple as possible, computationally

efficient and not resort to additional data sources to facilitate a potential application to EO data at global scale.

Observation geometries need special attention as the MODIS instruments measure in a wide swath to obtain high temporal50

coverage. They scan across their track from right to left with view zenith angles up to 65 degree from nadir. The wide range of

viewing geometries leads to different fractions of surface types seen from one overpass to the next for a given site. In addition,

vegetation structure and topography, together with the position of the sun relative to the sensors, cause variable shadowing
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effects. The reflectance product (MODIS MCD43A4, Schaaf and Wang (2015b)) partly accounts for these anisotropy effects

and simulates a nadir view. In order to partly account for variability in the observed LST that is related to changing observation55

geometry (Rasmussen et al., 2011; Guillevic et al., 2013; Ermida et al., 2014), a correction approach developed by Ermida

et al. (2018) estimates an LST offset as if the instrument would measure from directly above a site. For some applications,

an oblique view might be favourable over a nadir constellation, for example to enhance the contribution of vegetation canopy

to the LST estimate and minimise fractions of soil or understorey. In addition, we provide LST corrected to a viewing zenith

angle of 40 degrees. In contrast to MODIS, the Landsat sensors acquire images at much smaller view angles around 7.5-degree60

from nadir. Ground control points and a digital elevation model help to correct for small directional effects related to terrain

structure and viewing angles (Wulder et al., 2019).

The FluxnetEO products of surface reflectance, vegetation indices, and LST, that result from the proposed processing, are freely

available by the services of the ICOS Carbon Portal (see data availability statement, (Walther et al., 2021a, b)). Each data set

has a complementary data layer with additional flags to inform the user whether data points correspond to actual good quality65

observations according to the proposed criteria or whether they have been estimated in different gap-filling steps. For all sites,

the FluxnetEO products cover the period 1984-2017 and 2000-2020 for Landsat and MODIS, respectively. We describe details

about data inputs in section 2.2, explain the quality control and gap-filling approaches in section 3, and provide information on

the resulting products in table 2 and the data availability section.

70

2 Data

2.1 Eddy-covariance sites

Here, we select the 338 sites from the LaThuile, Fluxnet2015 (Pastorello et al., 2020) and ICOS Drought 2018 Initiative

(Drought 2018 Team and ICOS Ecosystem Thematic Centre, 2020) flux data releases. Site coordinates given in different

sources (Ameriflux, Asiaflux, Europe-Fluxdata, Fluxdata.org, and a previously compiled in-house Fluxnet-site location list)75

may differ. In that case, the coordinates with the highest precision were selected. In case the coordinates differed by more than

0.001◦ for a given site, a manual check in Google Earth identified the correct or most probable location of the site. The final

set of 338 sites for which we process the MODIS and Landsat EO data is listed in table A1. Forests and grasslands are best

represented among the 338 sites. The collection includes fewer sites from savannas and shrublands, and only one site from a

deciduous needleleaf forest (table 1).80

2.2 MODIS and Landsat

The MCD43A4 product combines AQUA and TERRA observations and provides estimates of surface reflectance in the

MODIS bands 1-7 (Schaaf and Wang, 2015b). Time series represent observations modelled at nadir view at a resolution of

16 days and 500 m spatial pixels. For the quality control of MCD43A4, a complementary product, MCD43A2, contains band
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Table 1. Representation of different plant functional types and Koeppen climate classes across the 338 sites in the FluxnetEO collection.

plant functional type number of sites Koeppen main climate number of sites

evergreen needleleaf forest (ENF) 86 arid 26

evergreen broadleaf forest (EBF) 25 equatorial 23

deciduous needleleaf forest (DNF) 1 warm temperate 171

deciduous broadleaf forest (DBF) 40 snow 103

mixed forest (MF) 13 polar 12

woody savanna (WSA) 10 undefined 3

savanna (SAV) 11

closed shrubland (CSH) 6

open shrubland (OSH) 19

grassland (GRA) 58

crops (CRO) 36

wetlands (WET) 32

snow (SNO) 1

specific information on the quality of the inversion of the bidirectional reflectance distribution function as well as snow cover,85

platform information and land/water coverage in the scene (Schaaf and Wang, 2015a).

The MODIS MOD11A1 (TERRA, starting in 2000) and MYD11A1 (AQUA, starting in 2002) products (hereafter jointly re-

ferred to as MxD11A1, Wan et al. (2015a, b)) provide daily LST and emissivity estimates aligned with quality and view angle

information at 1 km spatial pixel sizes. The LST values represent instantaneous values and are selected based on viewing

zenith angle and LST values (MOD11A1 user guide, https://lpdaac.usgs.gov/documents/118/MOD11_User_Guide_V6.pdf).90

Four LST data streams are available: TERRAday with observations around 10.30 am local time, AQUAday with observations

around 1.30 pm, TERRAnight around 10.30 pm and AQUAnight around 1.30 am. For each of them, observation times vary be-

tween overpasses by about ±1.5 hours.

Reflectance-based Landsat time series comprise the entire multi-temporal collection 1 of the Landsat 4, 5, 7 and 8 archives95

(https://landsat.gsfc.nasa.gov/data) covering the period 1984-2017 at 30 m spatial pixel size. The seven spectral bands of the

Landsat product were collected: BLUE, GREEN, RED, near infrared (NIR), shortwave infrared 1 and 2 (SWIR1, SWIR2),

and thermal infrared (TIR) (https://landsat.usgs.gov/what-are-band-designations-landsat-satellites). Landsat data have been

pre-processed using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS, Schmidt et al., 2013) and

the Landsat Surface Reflectance Code (LaSRC, https://landsat.usgs.gov/landsat-surface-reflectance-data-products) for atmo-100

spheric correction. The pixelQA layer contains information related to clouds, cloud shadows, snow, and ice and is useful for

the quality control of the Landsat data (Zhu and Woodcock, 2012; Zhu et al., 2015).
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The services by Google Earth Engine (Gorelick et al., 2017) provided cutouts of the above mentioned products at the EC

sites. Independently of the product and its spatial resolution, the cutout area was limited to a maximum distance of 2 km105

between a given tower and the centre of a given satellite pixel. Downloading the EO data in tiff-format avoided intransparent

reprojection of the data from sinusoidal to regular grid by Google Earth Engine, which would have been problematic for the

quality flags in the MCD43A2 and MxD11A1 products. The Landsat data were already provided in regular grid by Google

Earth Engine.

3 Methods110

Data processing works separately for each pixel in a cutout (henceforth subpixel). We describe here the overall concept and

rationale of the quality filter and the gap-filling, but report all technical details in the Appendix B.

3.1 Processing steps of reflectance-based indicators

3.1.1 Quality control and computation of spectral indices

Quality control of the MODIS reflectance-based vegetation indices focused on three aspects: good inversion quality of the115

bidirectional reflectance distribution function as indicated by the BRDF_Albedo_Band_Quality_Bandx flags in the MCD43A2

product, snow-free conditions according to the Snow_BRDF_Albedo flag, and the omission of reflectance values that are

affected by the presence of water in the field of view using the BRDF_Albedo_LandWaterType flag. For the selected data

samples which passed those criteria we computed a large set of spectral vegetation indices (table 2). An additional check

removed possible values of the vegetation indices outside their defined ranges. Some of the time series contained obvious out-120

lier values. We employed an empirical filter which largely removed those samples which had a particularly large difference to

the median of their surrounding values in a temporal window (Papale et al., 2006, technical details on all filters in Appendix B).

In the Landsat data, the flag pixel_qa provided quality attributes (CFMask, Foga et al., 2017) and removed pixels that

contained snow/ice, cloud, and/or cloud shadow using a binary flag of presence. Similar to the MODIS product, we computed125

a series of spectral vegetation indices (table 2) using the good quality observations and removed possible values of the indices

outside their defined ranges. A slightly modified filter removed possible outlier values also for the Landsat data (see details in

Appendix B.)

3.1.2 Gap-filling

In the literature several gap-filling and smoothing approaches are available which work in one or more dimensions (e.g., Wang130

et al., 2012; Kandasamy et al., 2013; v. Buttlar et al., 2014; Weiss et al., 2014; Yan and Roy, 2018; Zhang et al., 2021)

or use fusion methods between sensors (Verger et al., 2011; Moreno-Martínez et al., 2020). They differ in their levels of

sophistication and computational efforts. One of our requirements for the gap-filling approach was that is employs exclusively
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temporal operations and does not use additional data sources. This allows the gap-filling to be generally applicable to a single

time series per site, to several subpixels in a cutout around a site and also to global EO data. The idea was to retain the good135

quality data and make as realistic estimates as possible for the gaps between them instead of representing a gap-free time series

from fitting functions to the valid data. The following recipe describes the steps to estimate missing data points conceptually,

all technical details we report in Appendix B:

1. Fill short non-snow related gaps (≤ 5 days or ≤1 month for MODIS and Landsat, respectively) with a median across

valid values in moving windows of 16 days (3 months for Landsat). The moving median only fills gaps, it does not140

change/ smooth valid data points.

2. Fill snow related gaps with a constant baseline value which is identified as the average of valid data points adjacent to

snow covered periods, i.e. immediately before snow fall or after snow melt (after Beck et al., 2007, but see details in

Appendix B). Consider all times with a snow flag larger than 0.1 or missing snow information as snow covered. The latter

periods are included as the snow flag appears to systematically miss snow periods in higher latitudes in the beginning of145

the winter. Still, frequent gaps with missing snow information also occur during the growing season. In order to avoid

wrong filling with a constant value during the growing season this gap-fill step is not applied when the probability of

snow cover is low, i.e. when the average seasonal cycle indicates typically snow-free conditions at a given time of the

year, or when typically no snow occurs at all at a given site.

3. Subsequently, another moving median in windows of 40 days (4 months for Landsat) fills gaps shorter than 65 days (2150

months for Landsat).

4. Compute the median seasonal cycle and use it to fill longer gaps by linearly scaling it to the time series in temporal

windows. This windowed operation guarantees more flexibility to correctly represent inter-annual variations in the time

series and might even partly account for changes in the shape of the seasonal cycle due to disturbances. It is, however,

not suited to fill regularly recurring gaps at a certain time of the year, e.g. during rain seasons (Verger et al., 2013).155

5. Fill the remaining gaps by piecewise cubic polynomial interpolation. Time series with less than 300 valid data points in

the whole record after application of all the previous gap-filling steps will not be meaningful for analysis but are still

filled by nearest neighbour interpolation.

6. Temporal operations cannot meaningfully fill gaps at the beginning and at the end of the record. Therefore the first/last

valid data points are repeatedly appended at the beginning/end of the record.160

The described processing steps are generalisable across a range of spectral vegetation indices and can reliably fill missing

data points across sites globally (see examples in section 4). However, a number of sites have extremely low data availability

after quality checks, and the gaps in their time series are challenging to temporally interpolate in a meaningful way. This

can lead to problematic gap-filled data points whose reliability and realism are questionable. Examples are tropical sites and/

or sites with a pronounced wet season with permanent cloud cover. The same generally applies for MODIS in the years165
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2000-2002 when observations stem mainly from the TERRA satellite and therefore data availability is comparatively low.

For Landsat, the number of available scenes is relatively heterogeneous across the globe (https://www.usgs.gov/media/images/

cumulative-number-scenes-landsat-archive) with some regions having a very good coverage (e.g., North America) while other

regions are observed less frequently (e.g., Russia and Africa). Such differences in the availability of good quality data between

sites strongly affect the quality of the gap-filling at site level. FluxnetEO therefore provides for each data layer a gap-fill flag170

which describes whether and if so, how a certain data sample has been imputed which allows users to explore individual sites

and use (parts of) the gap-filled data or resort to only using the high quality original data points.

3.2 Preprocessing of MODIS land surface temperature

3.2.1 Quality checks

The quality control of the MODIS LST did not use the flags provided in the MxD11A1 products, but focussed on the removal175

of outlier values. Negative outlier values in LST might represent residual cloud contamination, whereas unusually high values

might originate from undetected saturation in the level 1 data. Empirical quality checks followed the procedure for the MODIS

reflectances, i.e. they discarded data points that deviated strongly from the median of their surrounding values in temporal

windows of 30 days (Papale et al., 2006). An additional sanity check eliminated any daytime LST that was lower than the

minimum of AQUA and TERRA nighttime LST for a given day.180

3.2.2 Geometrical correction

For several applications, variable viewing geometries as inherent in the MODIS LST observations are not desirable. A geo-

metrical correction approach developed by Ermida et al. (2018) accounted for directionality in LST retrievals due to vegetation

structure and topographical effects. A parametric model estimates the magnitude of LST as if constantly observed from nadir

or from an angle of 40 degrees between the sensor and the zenith above a given site. Ermida et al. (2018) derived the coeffi-185

cients for this geometrical model at a resolution of 0.05 degree. We followed the pragmatic approach of selecting the model

coefficients for the correction from the pixel containing a given site, and acknowledge that we did not investigate to what ex-

tent the given site conditions represent the overall characteristics of the land surface in the allocated pixel. Further input to the

geometrical model were the viewing azimuth angles, solar angles at the overpass time and estimates of daily potential radiation

at the top of the atmosphere. The geometrical correction was applied to each subpixel in a cutout separately.190

3.2.3 Gap-filling

Also for the gap-filling of LST several approaches are present in the literature (e.g., Gerber et al., 2018; Ghafarian Malamiri

et al., 2018; Li et al., 2018; Dumitrescu et al., 2020). When using exclusively operations in time and no ancillary data to estimate

invalid LST observations, one needs to take care to respect the shorter autocorrelation of LST compared to the reflectance-based

indicators. According to Vinnikov et al. (2008) the weather-related component of clear-sky LST has an autocorrelation of about195

3 days. The following sequence of steps filled the four MODIS LST data streams (for technical details refer to Appendix C):
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1. Similar to the reflectances, a first step consisted in a temporal moving median to fill gaps, but in shorter windows of eight

days.

2. A second step was inspired by Li et al. (2018) and Crosson et al. (2012) and foresaw to use one of the four MODIS LST

time series as a ’reference’ to fill gaps in a second ’imputed’ one. We computed a median seasonal cycle of the difference200

of the ’reference’ and the ’imputed’ MODIS LST. This average shift was linearly scaled to the actual shift in temporal

windows. The sum of the scaled average shift and the ’reference’ LST filled gaps in the ’imputed’ LST time series. This

procedure iteratively used three of the MODIS LST data streams to fill the fourth, i.e. each one is imputed once by all

three others (see details in Appendix C). This gap-fill step was only possible in cases where not all four MODIS LST

observations were invalid during a given day, but extremely advantageous to preserve short synoptic variability in the205

gap-fill estimates.

3. In fully cloudy days without any valid LST observation, or in case a period has too few valid observations for a mean-

ingful calibration of the linear model in the previous step, the gap-filling followed the same steps like for the reflectance-

based spectral indices:

Linearly scale the valid LST observations of each of the four data streams to their own median annual cycle in temporal210

windows.

4. Interpolate the remaining gaps with cubic polynomials, or nearest neighbour in case of very low data availability (less

than 300 valid data points in an entire time series).

5. Missing values at the beginning and the end of the record cannot be meaningfully filled by temporal methods and are

therefore simply repeated.215

Steps 3-5 produced very smooth and therefore less realistic LST estimates than steps 1-2. Also, one needs to be aware that any

LST estimate in data gaps from this procedure necessarily represents an LST estimate under clear sky conditions, which can be

very different from the real LST under overcast skies (Ermida et al., 2019). This needs to be considered for a given application

to prevent effects of clear-sky bias in the LST data sets on the results. Like for the vegetation indices, also the LST data layers

have a gap-fill flag in FluxnetEO describing which data points are original and which gap-filling step filled the missing values.220
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Figure 1. Fraction of good quality data in the MODIS time series. Colours represent the median data availability in tower pixels across

sites grouped by plant functional type for 2003-2020 (the time period when both TERRA and AQUA satellites are in space).

4 Results and Discussion

4.1 Gap-statistics across indices

Data availability after quality screening is highly variable between sites and depends on the data stream (Fig. 1). MODIS LST

generally has less valid data points among the data sets than the reflectance-based indicators, and often less during daytime

than nighttime. While the LST are instantaneous values, the reflectances represent averages over 16-day periods. A lower225

number of good quality observations in indices that rely on band 6 relate to degraded detectors in AQUA MODIS band 6.

Large differences in the amount of good quality data between groups of plant functional types, especially for the reflectances,

mirror general atmospheric conditions in different regions.

4.2 Temporal patterns of the gap-filled time series

We illustrate some characteristics of the MODIS time series in FluxnetEO using example sites. The Austrian site Neustift230

(AT-Neu) was situated in a valley in the Alps and surrounded by grasslands which were typically mown three times a year

(Wohlfahrt et al., 2008). According to their nature, the LST time series exhibit faster variability than the vegetation indices

(Fig. 2). Midday observations (AQUAday) partly show an LST increase after the first harvest event in a year around the day

of the year 150. The MSC of most vegetation indices clearly marks the mowing timing, although the relative magnitude varies

between indices. Constant values in winter represent snow-covered times.235

Focusing on the example of the MODIS EVI, other sites illustrate a few characteristics of the gap-filling procedure in

more detail (Fig. 3): At the evergreen needleleaf forest site El Saler in Spain (ES-ES1) much data passes the quality control

9
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Figure 2. Median seasonal cycle (red) and individual yearly trajectories (gray) of the LST (top row) and vegetation indices and surface

reflectance (second to last rows) in the pixel containing the Austrian site Neustift (AT-Neu).

and mostly short gaps are reliably filled also in the absence of a very regular seasonal cycle in EVI. The boreal forest site

Saskatchewan (CA-SF1) illustrates the effect of a disturbance that happened in 2015 (though the site was operated only until240

2006). The gap-filling procedure adapts to the modified conditions both abruptly when the disturbance happens and gradually

during recovery in the following years. There is a problematic group of high EVI values during winter 2006/07. The moving

window outlier filter applied to the MODIS reflectances is by design unable to detect those outliers as they occur consecutively

in a short period of time. In Tharandt (DE-Tha, evergreen needleleaf forest) and Lonzee (BE-Lon, crops), data are scarce in

the years 2000-2002 where only TERRA was in operation and the estimated values are less reliable. Also, false filling by245

the snow baseline value during the growing season could not entirely be prevented, causing an unrealistic dip in one year in

each of the sites. Note that the snow flag contains partly long data gaps in CA-SF1, DE-Tha and BE-Lon. Finally, the woody

savanna site Adelaide River (AU-Ade) is a typical example of EC sites in climates with a dry and a wet season. While in the

dry season basically no data gaps occur, cloud coverage in the rainy season is long enough such that mainly the last gap-filling

steps of a linearly scaled MSC and interpolation take effect. Although the scaling of the MSC does not fully succeed in all250

years to produce smooth transitions between the good quality data and the gap-filled ones, the interpolation is able to preserve
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Figure 3. Illustration of gap-filling steps in the pixel containing selected eddy-covariance sites for the MODIS EVI.

inter-annual variations in the EVI.

Missing LST values were estimated most reliably in the gap-filling steps 1-2 (moving median and scaled average shift to

observations at other overpass times) because the typical short-term variability in the time series could be preserved. In the255

Spanish site Majadas de Tietar (ES-LMa, Fig. 4 top panel), savanna-type vegetation is prevalent with a dry summer and wet

winter. Visually the gap-filling procedure succeeds in preserving the typical higher LST variability in the dry season and sea-

sonally changing diurnal amplitudes. Also, in Saskatchewan (CA-SF1) gap-filling step 2 successfully estimates the largest

fraction of missing values for each data stream from the complementary observation times. The EVI indicated a disturbance

event in the beginning of 2015 (Fig. 3) that continued to strongly affect the EVI also in the following year. The event also260

marks the LST time series in that daytime LST, and therefore, the diurnal amplitude clearly increase in summer after 2015. The

gap-filling procedure follows this behaviour. Relative to Majadas de Tietar or Saskatchewan, in the mixed forest in Vielsalm

(BE-Vie), data gaps are much more persistent throughout a day and the gap-filling works more often with the third gap-filling

step using an average seasonal cycle of LST to estimate missing observations. Finally, at the woody savanna site Howard

Springs in northern Australia (AU-How, Fig. 4 bottom panel) there is a strong seasonal phasing between daytime and night-265

time LST. Data availability also changes with the seasons. In the monsoon season, synoptic variability in the filled data points

11

https://doi.org/10.5194/bg-2021-314
Preprint. Discussion started: 25 November 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 4. LST gap-filling steps in the pixel containing selected eddy-covariance sites for daytime and nighttime LST. The rightmost column

shows the average annual cycle of the correction factor between LST from variable viewing angles and LST corrected to nadir view.

is unrealistically low because the gap-filling needs to resort to filling by a median seasonal cycle of LST (obtained from those

years in which the monsoon starts late) or by interpolation.

Geometrical corrections to nadir viewing angle are much larger and have a stronger seasonality for daytime LST than for night-

time observations (rightmost panel in Fig. 4, Ermida et al. (2018)). The daytime LST value from a nadir view is consistently270

estimated to be several Kelvin higher than from an oblique view. The Australian Howard Springs is an exception in that the

correction offset to nadir has no consistent sign during the wet season .
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4.3 On the importance of spatial context

The type and distribution of the vegetation around a given EC measurement station are not necessarily homogeneous. Instead,

clusters of different vegetation or land use types might prevail in different sections of the immediate surroundings of a site.275

The area that a given flux measurement is representative of (the flux footprint, Schmid, 1997) changes rapidly with wind

direction, turbulence conditions, atmospheric stability, and surface resistance (Schmid, 1997; Vesala et al., 2008; Chu et al.,

2021). An exact match between the flux footprint and EO data (or a model grid cell) is challenging due to the often unknown

or uncertain flux footprints and coarse spatial grid sizes. The scale mismatch is equally important in validation exercises for

site-level measurements of surface reflectance (Román et al., 2009; Cescatti et al., 2012), site-level energy-balance closure280

(Stoy et al., 2013) and model-data integration (Williams et al., 2009). The role that the scale-mismatch between site-level and

EO data plays for ecosystem analyses clearly depends on the site and the application. Some applications try to account for the

mismatch (Pacheco-Labrador et al., 2017; Wagle et al., 2020), others ignore it and use a custom area around each EC site.

Approaches to quantify and account for heterogeneity within a satellite pixel or a certain area around a given site do exist in

the literature (Román et al., 2009; Chu et al., 2021; Duveiller et al., 2021), but seem less exploited. In this section, we present285

different examples for the relevance of spatial context. We computed the average flux footprints for every day (MODIS) and

month (Landat) around three example EC stations (Majadas de Tietar, ES-LM1, Gebesee, DE-Geb, and Zotino, RU-Zo2). We

illustrate how the relationship between EC-derived gross primary productivity (GPP) and EVI as an EO-derived proxy of the

same changes according to whether the footprint area is taken into account or custom cutout sizes are chosen. In RU-Zo2, we

compare surface temperature inverted from long-wave outgoing radiation to LST and illustrate how the pixel sizes relate to the290

flux footprint area (see details on the data processing in Appendix D).

The site ES-LM1 (El-Madany et al., 2018) is a tree-grass ecosystem which is very homogeneous at the remote sensing scale

(pixels >=20 m). While the trees are evergreen, the herbaceous layer senesces in summer and re-greens in winter (Luo et al.,

2018). The EO cutout of 2x2km2 includes irrigated agricultural areas north of the flux footprint. These fields are barren in295

winter and are covered with crops in summer. MODIS and Landsat EVI are strongly negatively correlated to GPP derived

from EC in the pixels over agricultural areas, as are the anomalies of EVI and GPP (Fig. D1 a-d). Conversely, high positive

correlations prevail across the remaining larger parts of the EO cutouts. Landsat EVI overlaid by the average flux footprint

for two example months illustrates that the EC GPP is only representative of the tree-grass ecosystem (Fig. 5e, g). Hence,

the spatial representativeness of EO data for EC fluxes might differ strongly depending on which satellite pixels are chosen300

for the analysis. We computed the average EVI that is representative of the flux footprint (henceforth fpa for footprint area).

We compared it with an average EVI weighted with the probability density function of the flux footprint in order to take into

account the decreasing influence of subpixels further away from the tower (henceforth fpw for weighted footprint area), as well

as with two pragmatic approaches in case a flux footprint is unknown: an EVI average over all subpixels in the cutout with a

radius of 2 km (henceforth fex for full extent) or only the single subpixel that contains the tower (cpx for center pixel). The305

most noticeable difference between the time series for the different intersection methods is that the full extend (fex) in both
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Landsat and MODIS EVI is comparatively lower during the winter period (Fig. 5a,c). The agricultural areas contribute to fex,

while the footprint intersection methods (fpa and fpw) and the center pixel (cpx) EVI consistently indicate high greenness in

the tree-grass ecosystem.

Gebesee, DE-Geb, is an agricultural site. The common approach in conducting EC measurements is to put the tower in a loca-310

tion where the land use is as homogeneous as possible, to be able attribute fluxes to a targeted ecosystem, e.g. a known crop

type. In Gebesee, this was assured for most of the years in the long site history (e.g. Fig. 5h), but not from 2011-2013. In these

years, the field was split into two different adjacent crop types that contributed to the measured fluxes (Fig. 5f), raising the risk

for pitfalls in the analyses of the fluxes. Also, in situations/ years when the flux footprint represents a single field, additional

potential difficulties originate from phenological differences between fields within the EO cutouts (Fig. 5f,h) if not properly315

matched. For example, the anomalies of both GPP and EVI are only highly correlated with each other in the immediate sur-

roundings of the tower (Fig. D1g-h). Phenological heterogeneity between fields might explain why the EVI averaged over the

full cutout (fex) is clearly different from the EVI in the footprint area (fpa, fpw) or the tower pixel (cpx) during the growing

season maxima in 2015/16 (Fig. 5b,d). Also, consistently with the GPP, the EVI in the tower pixel indicates slightly later

senescence in 2017 than averaged over the footprint area or the full cutout, highlighting considerable effects of a mismatch320

between the flux footprint and the EO area.

Irrespective of the match between flux footprint and the area that the EVI is representative of, Fig. 5 illustrates the complimen-

tarity between MODIS and Landsat in terms of resolution. Although Landsat offers high spatial detail, the temporal patterns

that can be resolved with monthly averages are much coarser than the shorter variations that daily MODIS data can describe.

Depending on the application the user of FluxnetEO might choose one or the other.325

RU-Zo2, the Zotino tall tower observatory ZOTTO, is located in the taiga-tundra transition zone. The landscape in the prox-

imity of the EC station is a heterogeneous mix of forest, bogs and wetlands. At the tall tower, fluxes are measured at different

heights above the canopy. The size of the flux footprint strongly increases with height and the fluxes at the highest level partly

represent areas more than 2 km away from the site (Fig. 6b-d). Flux footprints of measurements closer to the canopy are usually330

much smaller than the MODIS pixel size of 1 km for the LST, but the flux footprints of the higher measurement levels at RU-

Zo2 partly integrate over multiple of such pixels. Size and direction of the footprint extents strongly vary over time (note that

Fig. 6b-d represent three consecutive days), such that the vegetation types and surface conditions sampled do not only differ

between measurement heights but also between days. We compare spaceborne LST AQUAday integrated over the flux footprint

area (LSTfpa) with surface temperature inverted from long-wave outgoing radiation measured at the tower for clear-sky days335

(Fig. 6a, see details about the methods in Appendix D). LSTfpa of all three heights is consistently about 30% higher than the

inverted surface temperature for most of the year, with a notably higher scatter under freezing conditions. The slope between

LSTfpa and surface temperature markedly decreases for the highest temperatures, which might indicate significant changes in

surface emissivity during the brief peak growing season when vegetation extent is highest and the surface has drained from

snow melt.340
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Figure 5. Time series of EVI and GPP for ES-LM1 (a,c) and DE-Geb (b,d). MODIS EVI (top row) and Landsat EVI (second row) represent

areas with different extents: full extent of the cutout (EVIfex), the center pixel that contains a tower (EVIcpx), the EVI averaged over the flux

footprint area (EVIfpa), and the EVIfpa weighted with the flux probability density function (EVIfpw). Subplots e-h: Landsat EVI overlaid with

the monthly flux footprint (black line) for ES-LM1 in November 2014 (e) and April 2016 (g), and for DE-Geb in February 2012 (f) and

February 2016 (h). Non-original low quality EVI values are blacked out. Red circles indicate the location of the EC station, white circle

denotes 1 km diameter from the station.
16
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Figure 6. Relationship between MODIS AQUAday LSTfpa and surface temperature calculated from the long-wave outgoing radiation at 302 m

above ground (details about the methods in Appendix D). The red line represents the 1:1 line. Subplots b to d show example footprints at the

three levels (black lines) overlaid on the LST map from May 31st to June 2nd, 2017, respectively. Non-original low quality LST values are

blacked out. The white circle indicates the 1 km diameter around the tower.
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Next to matching the flux footprints with the EO data pixels, spatial context is equally important in studies of vegetation

recovery after a disturbance event. The Sky Oaks-Young Stand (US-SO3) is a closed shrubland with woody vegetation less than

2 m tall. The US-SO3 site experienced a fire during the period 2002-2003, followed by regrowth. Landsat allows to observe

the impact structure and the spatially very heterogeneous recovery dynamics with remarkable detail (Fig. 7): The fire caused345

lower than average EVI in large parts of the cutout during the period 2002-2004 (Fig. 7d-f). From 2005 onwards, some patches,

particularly the western part of the cutout, appear to have recovered faster from the disturbance than other patches (Fig. 7g). By

2011, EVI has reached pre-fire values in most parts of the area around the site with only small patches as exceptions indicating

that regrowth was complete (Fig. 7n). This example illustrates how high spatial resolution EO combined with EC at the site-

level can provide complementary insights for better understanding disturbance regimes and the associated recovery dynamics.350

18

https://doi.org/10.5194/bg-2021-314
Preprint. Discussion started: 25 November 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 7. Annual EVI dynamics at the site US-SO3 as observed by Landsat. Time series of spatial average annual EVI for the full 2x2km2

cutout (a) and the long-term temporal average spatial patterns of EVI (b). Annual anomalies of EVI for the period 2003-2011 in panels c-n

(anomaly EVIyear n = EVIyear n - mean(EVI1985-2001).
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5 Conclusions

The proposed methods aim at assuring good quality and producing as reliable as possible gap-free estimates of EO-derived

surface reflectance, vegetation indices, and LST for pixels around EC sites. Depending on the question/ application at hand,

MODIS or Landsat EO data with their inherently very diverse spatial and temporal resolutions might be more suitable. The355

requirements for the strictness of the quality checks and the sophistication of the gap-filling methods differ by use case. No

approach can fit all requirements, but we expect FluxnetEO to offer many opportunities to advance our understanding of land-

atmosphere fluxes for individual sites, across regional networks and globally. It helps bridging the Fluxnet, remote sensing,

and modelling communities, and facilitates consistent benchmarking of EO-based flux models of any kind. We anticipate that

this will accelerate our ability to monitor and understand land-atmosphere fluxes across spatial and temporal scales. For the360

future we plan to maintain, update and improve FluxnetEO. This will include extending the time series to most recent years,

adding EC sites as measurements become available in one of the networks, improving the processing based on newly identified

drawbacks and/ or user needs (e.g., Landsat sensors harmonisation), and updating to new EO data collections (e.g. Landsat

collection 2). Importantly, forthcoming FluxnetEO versions shall more strongly facilitate complementary usage of multiple

missions to exploit their synergy potential, so that future additions will include further EO products, for example the Sentinel365

missions. Although temporal overlap with most of the EC records is low, it will grow with the lifetime of the different Sentinels

and because strong efforts in the EC community target the timely, free and open distribution of site-level measurements.

Data availability. Data sets are available for open and free usage under ICOS Carbon Portal in separate collections Landsat (Walther et al.,

2021a, https://meta.icos-cp.eu/collections/-x7_Z4PGRuav5QzwgEY_DErM) and for MODIS (Walther et al., 2021b, https://meta.icos-cp.

eu/collections/tEAkpU6UduMMONrFyym5-tUW). Zipped folders package the data by continents and groups of countries. In the zip-370

directories, the files are organised by site and in two processing versions: One version contains spatially explicit data fields for each subpixel

in the cutout of 2x2km2 and is denoted by ’subpixel’ in the file name. A second version is an average time series per site that represents the

area within 1km radius of the site with the inverse distance to the tower as weight (’average_cutout’). In this version, at every time step all

valid subpixels closer than 1km to the site are averaged after the quality checks, and the gap-filling procedure takes this average time series

as input. The data fields contained in both processing versions are listed in table 2. Each data field has a complementary data layer with a375

flag (’gapfilltype’) indicating which data point is of original good quality or how a given point has been imputed in the gap-filling procedure.

The processing version ’average_cutout’ has additional fields that indicate how many valid pixels within 1km of the tower contributed to the

spatial average per time step (’N’) and the spatial standard deviation of the vegetation index or LST for the given time step (’NSTD’).
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Appendix A: Site selection
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Table A1. Sites in FluxnetEO: site codes and coordinates (latitude in degree N, longitude in degree E, rounded to 4 decimals). Site codes

including a * indicate sites for which currently only MODIS data are provided.

site code latitude, longitude site code latitude, longitude

AR-SLu -33.4648, -66.4598 AR-Vir -28.2395, -56.1886

AT-Neu 47.1167, 11.3175 AU-ASM -22.283, 133.249

AU-Ade -13.0769, 131.1178 AU-Cpr -34.0021, 140.5891

AU-Cum -33.6152, 150.7236 AU-DaP -14.0633, 131.3181

AU-DaS -14.1593, 131.3881 AU-Dry -15.2588, 132.3706

AU-Emr -23.8587, 148.4746 AU-Fog -12.5452, 131.3072

AU-Gin -31.3764, 115.7138 AU-How -12.4943, 131.1523

AU-RDF -14.5636, 132.4776 AU-Rob -17.1175, 145.6301

AU-TTE -22.287, 133.64 AU-Tum -35.6566, 148.1517

AU-Wac -37.4259, 145.1878 AU-Whr -36.6732, 145.0294

AU-Wom -37.4222, 144.0944 AU-Ync -34.9883, 146.2916

BE-Bra 51.3076, 4.5198 BE-Lon 50.5516, 4.7462

BE-Vie 50.3049, 5.9981 BR-Ban -9.8244, -50.1591

BR-Cax -1.7197, -51.459 BR-Ji2 -10.0832, -61.9309

BR-Sa1 -2.8567, -54.9589 BR-Sa2 -3.0119, -54.5365

BR-Sa3 -3.018, -54.9714 BR-Sp1 -21.6195, -47.6499

BW-Ma1 -19.9165, 23.5603 CA-Ca1 49.8673, -125.3336

CA-Ca2 49.8705, -125.2909 CA-Ca3 49.5346, -124.9004

CA-Gro 48.2167, -82.1556 CA-Let 49.7093, -112.9402

CA-Man 55.8796, -98.4808 CA-Mer 45.4094, -75.5186

CA-NS1 55.8792, -98.4839 CA-NS2 55.9058, -98.5247

CA-NS3 55.9117, -98.3822 CA-NS4 55.9144, -98.3806

CA-NS5 55.8631, -98.485 CA-NS6 55.9167, -98.9644

CA-NS7 56.6358, -99.9483 CA-Oas 53.6289, -106.1978

CA-Obs 53.9872, -105.1178 CA-Ojp 53.9163, -104.692

CA-Qcu 49.2671, -74.0365 CA-Qfo 49.6925, -74.3421

CA-SF1 54.485, -105.8176 CA-SF2 54.2539, -105.8775

CA-SF3 54.0916, -106.0053 CA-SJ1 53.908, -104.656

CA-SJ2 53.945, -104.649 CA-SJ3 53.8758, -104.6453

CA-TP1 42.6609, -80.5595 CA-TP2 42.7744, -80.4588

CA-TP3 42.7068, -80.3483 CA-TP4 42.7102, -80.3574

CA-TPD 42.6353, -80.5577 CA-WP1 54.9538, -112.467

CA-WP3 54.47, -113.32 CG-Tch -4.2892, 11.6564

CH-Aws 46.5832, 9.7904 CH-Cha 47.2102, 8.4104

CH-Dav 46.8153, 9.8559 CH-Fru 47.1158, 8.5378

22

https://doi.org/10.5194/bg-2021-314
Preprint. Discussion started: 25 November 2021
c© Author(s) 2021. CC BY 4.0 License.



site code latitude, longitude site code latitude, longitude

CH-Lae 47.4781, 8.365 CH-Oe1 47.2858, 7.7319

CH-Oe2 47.2863, 7.7343 CN-Anh 33.0, 117.0

CN-Bed 39.5306, 116.252 CN-Cha 42.4025, 128.0958

CN-Cng 44.5934, 123.5092 CN-Dan 30.4978, 91.0664

CN-Din 23.1733, 112.5361 CN-Do1 31.5167, 121.961

CN-Do2 31.5847, 121.903 CN-Do3 31.5169, 121.972

CN-Du1 42.0456, 116.671 CN-Du2 42.0467, 116.2836

CN-Du3 42.0551, 116.2809 CN-HaM 37.37, 101.18

CN-Hny 29.31, 112.51 CN-Ku1 40.5383, 108.694

CN-Ku2 40.3808, 108.549 CN-Qia 26.734, 115.0663

CN-Sw2 41.7902, 111.8971 CN-Xi1 43.5458, 116.6778

CZ-BK1 49.5021, 18.5369 CZ-BK2* 49.4944, 18.5428

CZ-Lnz 48.6816, 16.9464 CZ-RAJ 49.4437, 16.6965

CZ-Stn 49.036, 17.9699 CZ-wet 49.0246, 14.7704

DE-Akm 53.8662, 13.6834 DE-Bay 50.1419, 11.8669

DE-Geb 51.0997, 10.9146 DE-Gri 50.95, 13.5126

DE-Hai 51.0792, 10.453 DE-Har 47.9344, 7.601

DE-HoH 52.0853, 11.2192 DE-Hte 54.2103, 12.1761

DE-Hzd 50.9638, 13.4898 DE-Kli 50.8931, 13.5224

DE-Lkb 49.0996, 13.3047 DE-Lnf 51.3282, 10.3678

DE-Meh 51.2753, 10.6555 DE-Obe 50.7867, 13.7213

DE-RuR 50.6219, 6.3041 DE-RuS 50.8659, 6.4471

DE-RuW 50.5049, 6.331 DE-Seh 50.8706, 6.4497

DE-SfN 47.8064, 11.3275 DE-Spw 51.8922, 14.0337

DE-Tha 50.9626, 13.5652 DE-Wet 50.4535, 11.4575

DE-Zrk 53.8759, 12.889 DK-Eng 55.6905, 12.1918

DK-Fou 56.4842, 9.5872 DK-Lva 55.6833, 12.0833

DK-Ris 55.5303, 12.0972 DK-Sor 55.4859, 11.6446

ES-Abr 38.7018, -6.7859 ES-Amo 36.8336, -2.2523

ES-ES1 39.346, -0.3188 ES-ES2 39.2756, -0.3153

ES-LJu 36.9266, -2.7521 ES-LM1 39.9427, -5.7787

ES-LM2 39.9346, -5.7759 ES-LMa 39.9415, -5.7734

ES-LgS 37.0979, -2.9658 ES-Ln2 36.9695, -3.4758

ES-VDA 42.1522, 1.4485 FI-Hyy 61.8474, 24.2948

FI-Jok 60.8986, 23.5134 FI-Kaa 69.1406, 27.2698

FI-Let 60.6418, 23.9595 FI-Lom 67.9972, 24.2092
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site code latitude, longitude site code latitude, longitude

FI-Sii 61.8326, 24.1928 FI-Sod 67.3624, 26.6386

FI-Var 67.7549, 29.61 FR-Aur 43.5497, 1.1061

FR-Bil 44.4937, -0.9561 FR-EM2 49.8721, 3.0206

FR-Fon 48.4764, 2.7801 FR-Gri 48.8442, 1.9519

FR-Hes 48.6741, 7.0646 FR-LBr 44.7171, -0.7693

FR-Lam 43.4965, 1.2378 FR-Lq1 45.6431, 2.7358

FR-Lq2 45.6392, 2.737 FR-Pue 43.7413, 3.5957

GF-Guy 5.2788, -52.9249 GH-Ank 5.2685, -2.6942

GL-NuF* 64.1308, -51.3861 GL-ZaF 74.4814, -20.5545

GL-ZaH 74.4733, -20.5503 HU-Bug 46.6911, 19.6013

HU-Mat 47.8469, 19.726 ID-Pag 2.345, 114.036

IE-Ca1 52.8588, -6.9181 IE-Dri 51.9867, -8.7518

IL-Yat* 31.345, 35.052 IS-Gun 63.8333, -20.2167

IT-Amp 41.9041, 13.6052 IT-BCi 40.5238, 14.9574

IT-Bon 39.4778, 16.5347 IT-CA1 42.3804, 12.0266

IT-CA2 42.3772, 12.026 IT-CA3 42.38, 12.0222

IT-Col 41.8494, 13.5881 IT-Cp2 41.7043, 12.3573

IT-Cpz 41.7052, 12.3761 IT-Isp 45.8126, 8.6336

IT-LMa 45.1526, 7.5826 IT-La2 45.9542, 11.2853

IT-Lav 45.9562, 11.2813 IT-Lec 43.3036, 11.2698

IT-Lsn 45.7405, 12.7503 IT-MBo 46.0147, 11.0458

IT-Mal 46.114, 11.7033 IT-Noe 40.6062, 8.1512

IT-Non 44.6902, 11.0911 IT-PT1 45.2009, 9.061

IT-Pia 42.5839, 10.0784 IT-Ren 46.5869, 11.4337

IT-Ro1 42.4081, 11.93 IT-Ro2 42.3903, 11.9209

IT-SR2 43.732, 10.291 IT-SRo 43.7279, 10.2844

IT-Tor 45.8444, 7.5781 JP-MBF 44.3842, 142.3186

JP-Mas 36.054, 140.0269 JP-SMF 35.2617, 137.0786

JP-Tak 36.1462, 137.423 JP-Tom 42.7395, 141.5149

MY-PSO 2.973, 102.3062 NL-Ca1 51.971, 4.927

NL-Haa 52.0036, 4.8056 NL-Hor 52.2404, 5.0713

NL-Lan 51.9536, 4.9029 NL-Loo 52.1666, 5.7436

NL-Lut 53.3989, 6.356 PA-SPn 9.3181, -79.6346

PA-SPs 9.3138, -79.6314 PL-Wet 52.7622, 16.3094

PT-Esp 38.6394, -8.6018 PT-Mi1 38.5406, -8.0001

PT-Mi2 38.4765, -8.0246 RU-Che 68.613, 161.3414

RU-Cok 70.8291, 147.4943 RU-Fy2 56.4476, 32.9019
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site code latitude, longitude site code latitude, longitude

RU-Fyo 56.4615, 32.9221 RU-Ha1 54.7252, 90.0022

RU-Ha3 54.7046, 89.0778 RU-Sam 72.3738, 126.4958

RU-SkP 62.255, 129.168 RU-Tks 71.5943, 128.8878

RU-Vrk 67.0547, 62.9405 RU-Zot 60.8008, 89.3508

SD-Dem 13.2829, 30.4783 SE-Abi 68.3624, 18.7948

SE-Deg 64.182, 19.5565 SE-Htm 56.0976, 13.419

SE-Lnn* 58.3406, 13.1018 SE-Nor 60.0865, 17.4795

SE-Ros* 64.1725, 19.738 SE-Sk2 60.1297, 17.8401

SE-St1 68.3541, 19.0503 SE-Svb* 64.2561, 19.7745

SJ-Adv 78.186, 15.923 SJ-Blv 78.9216, 11.8311

SK-Tat 49.1208, 20.1635 SN-Dhr 15.4028, -15.4322

UK-ESa 55.9069, -2.8586 UK-Gri 56.6072, -3.7981

UK-Ham 51.1535, -0.8583 UK-PL3 51.45, -1.2667

UK-Tad 51.2071, -2.8286 US-AR1 36.4267, -99.42

US-AR2 36.6358, -99.5975 US-ARM 36.6058, -97.4888

US-ARb 35.5497, -98.0402 US-ARc 35.5465, -98.04

US-Atq 70.4696, -157.4089 US-Aud 31.5907, -110.5104

US-Bar 44.0646, -71.2881 US-Bkg 44.3453, -96.8362

US-Blo 38.8953, -120.6328 US-Bn2 63.9198, -145.3782

US-Bn3 63.9227, -145.7442 US-Bo1 40.0062, -88.2904

US-Bo2 40.009, -88.29 US-Brw 71.3225, -156.6092

US-CRT 41.6285, -83.3471 US-CaV 39.0633, -79.4208

US-Cop 38.09, -109.39 US-Dk3 35.9782, -79.0942

US-FPe 48.3077, -105.1019 US-FR2 29.9495, -97.9962

US-Fmf 35.1426, -111.7273 US-Fuf 35.089, -111.762

US-Fwf 35.4454, -111.7718 US-GBT 41.3658, -106.2397

US-GLE 41.3665, -106.2399 US-Goo 34.2547, -89.8735

US-Ha1 42.5378, -72.1715 US-Ho1 45.2041, -68.7402

US-Ho2 45.2091, -68.747 US-IB1 41.8593, -88.2227

US-IB2 41.8406, -88.241 US-Ivo 68.4865, -155.7503

US-KS1 28.4583, -80.6709 US-KS2 28.6086, -80.6715

US-LWW 34.9604, -97.9789 US-Lin 36.3566, -119.8423

US-Los 46.0827, -89.9792 US-MMS 39.3232, -86.4131

US-MOz 38.7441, -92.2 US-Me1 44.5794, -121.5

US-Me2 44.4523, -121.5574 US-Me3 44.3154, -121.6078

US-Me4 44.4992, -121.6224 US-Me5 44.4372, -121.5668
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site code latitude, longitude site code latitude, longitude

US-Me6 44.3233, -121.6078 US-Myb 38.0498, -121.7651

US-NC1 35.8118, -76.7119 US-NR1 40.0329, -105.5464

US-Ne1 41.1651, -96.4766 US-Ne2 41.1649, -96.4701

US-Ne3 41.1797, -96.4397 US-ORv 40.0201, -83.0183

US-Oho 41.5545, -83.8438 US-PFa 45.9459, -90.2723

US-Prr 65.1237, -147.4876 US-SO2 33.3738, -116.6228

US-SO3 33.3771, -116.6226 US-SO4 33.3845, -116.6406

US-SP1 29.7381, -82.2188 US-SP2 29.7648, -82.2448

US-SP3 29.7548, -82.1633 US-SRC 31.9083, -110.8395

US-SRG 31.7894, -110.8277 US-SRM 31.8214, -110.8661

US-Sta 41.3966, -106.8024 US-Syv 46.242, -89.3477

US-Ton 38.4316, -120.966 US-Tw1 38.1074, -121.6469

US-Tw2 38.1047, -121.6433 US-Tw3 38.1159, -121.6467

US-Tw4 38.103, -121.6414 US-Twt 38.1087, -121.653

US-UMB 45.5598, -84.7138 US-UMd 45.5625, -84.6975

US-Var 38.4133, -120.9507 US-WBW 35.9588, -84.2874

US-WCr 45.8059, -90.0799 US-WPT 41.4646, -82.9962

US-Whs 31.7438, -110.0522 US-Wi0 46.6188, -91.0814

US-Wi1 46.7305, -91.2329 US-Wi2 46.6869, -91.1528

US-Wi3 46.6347, -91.0987 US-Wi4 46.7393, -91.1663

US-Wi5 46.6531, -91.0858 US-Wi6 46.6249, -91.2982

US-Wi7 46.6491, -91.0693 US-Wi8 46.7223, -91.2524

US-Wi9 46.6188, -91.0814 US-Wkg 31.7365, -109.9419

US-Wrc 45.8205, -121.9519 VU-Coc -15.4427, 167.192

ZA-Kru -25.0197, 31.4969 ZM-Mon -15.4378, 23.2528
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Appendix B: Technical details about the processing of surface reflectance380

In this section we provide all specific technical details necessary to reproduce our processing steps for the surface reflectance

of MODIS and Landsat.

The quality control of the MODIS reflectance-based land surface indicators included the following steps:

– Omission of the MCD43A2 BRDF_Albedo_Band_Quality_BandX flags ≥ 3 for each band to remove bad inversion385

quality from the surface reflectances.

– The flag Snow_BRDF_Albedo eliminated pixels that contain snow. As the gap-filling procedure used the snow informa-

tion, a spatially aggregated snow flag was needed for the processing version that averages valid data within 1 km of the

tower. For this, we defined the aggregated snow flag as the fraction of subpixels in the cutout that are snow covered. If

more than 50% of subpixels have missing snow information for a certain day, the aggregated snow flag is set to missing390

as well.

– The presence of water in a scene seen by an optical sensor can strongly affect the observation. The BRDF_Albedo_LandWaterType

flag allowed to filter for pixels exclusively on land (flag=1). This eliminated all data for many Swiss, Dutch, Italian and

Finnish sites which are situated close to water bodies. Inclusion of ocean coastlines and lake shorelines (flag=2) and

shallow inland water (flag=3) resulted in reasonable time series at most sites. This came at the cost of having few other395

sites that were affected by the presence of water. As a trade-off between data availability and quality, we decided to

include land-water flags 1-3.

– After the computation of the vegetation indices from the individual spectral bands, an additional check removed possible

values of the spectral vegetation indices outside their defined ranges. An outlier filter compared each value to the median

of all valid values in temporal windows of 30 days (Papale et al., 2006). A large difference of a given value to the median400

of its surrounding values indicates a potential outlier. The threshold z as in Papale et al. (2006) was set to 2, and only a

less conservative threshold of z=3 acted when more than 20 valid values were available in a given window.

The empirical outlier filter for Landsat slightly differed from the one for MODIS and removed observations in the five

highest and lowest percentiles of the mean seasonal cycle of an index if they differed more than 75% from their surrounding

3-months moving window median. The second criterion was critical in order to preserve observations of disturbance events or405

recovery dynamics.

Technical details for the gap-filling:

1. The first step is a moving window median to fill short non-snow related gaps. If the entire time series has less than 40%

valid data, a given moving window contains both the actual values and the median seasonal cycle for the given time of410

the year. The median for the moving window refers then to the distribution of both.
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2. The second step fills reflectance values with a constant value in the presence of snow (snow flag≥0.1). Partly long

periods with missing snow information in the Snow_BRDF_Albedo flag needed special treatment. Some of these gaps

appeared systematically in early winter in higher latitudes, so also times of missing snow information are considered as

snow covered. However, also during the growing season long periods of missing snow information occur in several sites415

globally. The following criteria check whether a period that is considered snow covered by high values or missing snow

flags is filled with a constant baseline value or not:

– If a given site has less than 60 days with valid snow coverage (i.e. Snow_BRDF_Albedo=1) in the total record,

snow typically does not occur at the site. In this case the gap-filling procedure does not apply this gap-filling step

at all for this site.420

– The gap-filling with a constant value only addresses gaps with a minimum length of 20 consecutive days with snow

flag missing or 1. This avoids filling very short intermittent snow periods or short gaps in snow information during

the growing season.

– This gap-filling step does not consider gaps due to missing snow information if the median seasonal cycle of snow

coverage indicates ≤ 5% of snow cover at the given time of the year and the difference between the fill value425

and the median seasonal cycle is large (i.e. exceeds the 85th percentile of the differences in times of missing snow

information).

The constant baseline value that is used to fill snow periods in the time series for a site represents the 3rd percentile of the

median seasonal cycle of the spectral vegetation indices. If a given index typically has high values outside the growing

season, the baseline value represents the 97th percentile instead. However, if for a given winter the average over the last430

5 valid data points at the end of the growing season or over the first 5 valid data points at the beginning of the next

growing season is lower than the baseline value (higher than the baseline for indices which are typically high outside the

growing season), the baseline takes the value of this average for the given winter (similar to Beck et al., 2007).

3. Linearly scale the median seasonal cycle to the time series to fill longer gaps (Verger et al., 2013). Calibration happens

in moving temporal windows of 80 days, and application of the scaling in steps of 20 days.435

Appendix C: Technical details about the processing of MODIS LST

In this section we provide all specific technical details necessary to reproduce the processing steps for the MODIS LST.

The empirical filter to remove potential outlier values (Papale et al., 2006) followed the same procedure like for the vegetation

indices, but used a constant z-value of 1.5 as it provided the best trade-off between filter success, wrong positives and wrong

negatives.440

Estimates of LST in data gaps originate from the following steps:
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– In contrast to the procedure for the reflectance-based vegetation indices, the distribution of values in the temporal win-

dows of 8 days is not supplied by the median seasonal cycle in case of low data availability. The moving window median

was not applied for windows with less than three valid values.

– Filling by linearly scaling the median seasonal shift between any two of the four MODIS LST time series to each other445

(Crosson et al., 2012; Li et al., 2018). The following explains this gap-filling step for TERRAday as the ’imputed’ time

series:

1. Obtain the median seasonal cycle (MSC) of the shift between TERRAday and AQUAday:

MSC( ∆(TERRAday, AQUAday) ).

2. Linearly scale MSC( ∆(TERRAday, AQUAday) ) to ∆(TERRAday, AQUAday) in temporal windows of 80 days450

(provided a minimum of 10 valid values in a given window). Apply the scaling in windows and steps of 20 days.

∆(TERRAday, AQUAday)t=k:k+80 = f ( MSC( ∆(TERRAday, AQUAday) )t=k:k+80 )

∆(TERRAday, AQUAday))*t=k:k+20 = m · MSC( ∆(TERRAday, AQUAday) )t=k:k+20 + n.

3. Add the scaled average shift to the AQUAday to obtain an estimate of TERRAday*[AQUAday].

TERRAday*t=k:k+20[]AQUAday] = AQUAdayt=k:k+20 + ∆(TERRAday, AQUAday))*t=k:k+20455

Analogously to TERRAday*[AQUAday], also the night-time LST observations contributed to estimate TERRAday*[TERRAnight]

and TERRAday*[AQUAnight]. All three estimates TERRAday*[AQUAday], TERRAday*[TERRAnight] and TERRAday*[AQUAnight],

served to fill gaps in TERRAday, namely in the order of increasing standard deviation of the differences between valid

TERRAday and each of the three estimated TERRAday*.

The procedure analogously filled AQUAday, TERRAnight and AQUAnight accordingly using valid observations of the460

remaining three, respectively.

– Linearly scale the MSC of one LST time series to the actual time series in temporal windows. As in step 2, the calibration

happened in temporal windows of 80 days, while the scaling was applied in windows of 20 days. Exemplarily for

TERRAday: TERRAdayt=k:k+80 = f ( MSC( TERRAday )t=k:k+80 )

TERRAday*t=k:k+20 = m · MSC( TERRAday )t=k:k+20 + n465
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Appendix D: Details about the analysis of spatial context

For the analysis at DE-Geb and ES-LM1 we used night-time partitioned GPP (Reichstein et al., 2005) with the mean of the

variable u?-threshold (GPP_NT_VUT_MEAN) from the Drought 2018 Team and ICOS Ecosystem Thematic Centre (2020)

data release (Migliavacca et al., 2020; ICOS Ecosystem Thematic Centre and Gebesee, 2019). We computed the actual flux

footprints after Kljun et al. (2015) from ICOS drought 2018 data (Drought 2018 Team and ICOS Ecosystem Thematic Centre,470

2020) using the R-code version (V1.41) of the FFP-tool. As a flux footprint for the intersection with EVI we define the area that

contributes 80% to the flux footprint probability density function (80% isoline of the monthly/daily cumulative flux footprint

for Landsat and MODIS, respectively).

Flux footprint calculation followed the same procedure for the three measurement heights at RU-Zo2. Surface temperature was

inverted from long-wave outgoing radiation measured at a fixed height of 302 m using Stefan-Boltzmann law. As the inverted475

surface temperature was compared to LST AQUAday, the average of half-hourly outgoing long-wave radiation for the nominal

overpass time at 1.30pm ± 1.5 hours was taken. Surface emissivity is unknown and we assumed emissivity=1 throughout the

year. Only days with good quality in both the LST and the long-wave outgoing radiation are used according to the following

criteria: i) more than 90% of the EO cutout have valid (i.e. non-gapfilled) values which restricts the comparison to clear-sky

conditions, and ii) at least 50% of the half-hourly long-wave fluxes in a given day are of good quality. A larger cutout of480

5x5 km2 was extracted for MODIS LST to fully cover also the extent of the flux footprint of the highest measurement level,

but is used only for illustrative purposes and not in the data provided in the FluxnetEO collections.
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Figure D1. Spearman correlation between EVI and GPP using monthly Landsat (a, c, e, g) and daily MODIS (b, d, f, h) data for ES-LM1

(a-d) and DE-Geb (e-h) Fluxnet sites. The correlation estimates were computed on the raw time series (a, b, e, f) and on the anomalies (c, d,

g, h).
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